from typing import NewType, Any import os import io from PIL import Image os.environ["CUDA_VISIBLE_DEVICES"] = "-1" import torch from torchvision import transforms # type: ignore from server.modules.recognizer.repository import ARecognizerRepository TorchModel = NewType("TorchModel", torch.nn.Module) def load_model(model_path, device="cpu") -> TorchModel: model = torch.load(model_path, map_location=device, weights_only=False) model.eval() return TorchModel(model) DOG_MODEL = load_model("server/models/dogs_model.pth") CAT_MODEL = load_model("server/models/cats_model.pth") class RecognizerService: __slots__ = "_repository" def __init__(self, repository: ARecognizerRepository): self._repository = repository async def images_cats(self) -> dict: return await self._repository.images_cats() async def images_dogs(self) -> dict: return await self._repository.images_dogs() async def predict_dog_image(self, image: bytes) -> dict: predicted_data = self._predict(image, DOG_MODEL) results = {} images = [] description: dict[str, list] = {} images_dogs = await self._repository.images_dogs() for d in predicted_data: predicted_idx, probabilities = d predicted_label = self._repository.labels_dogs()[str(predicted_idx)] name = predicted_label.replace("_", " ") images.append( { "name": name, "url": [ f"/static/assets/dog/{predicted_label}/{i}" for i in images_dogs[predicted_label] ], } ) description.setdefault(name, []).append( f"/dogs-characteristics/{name.replace(' ', '_')}" ) results[probabilities] = name return { "results": results, "images": images, "description": description, } async def predict_cat_image(self, image: bytes) -> dict: predicted_data = self._predict(image, CAT_MODEL) results = {} images = [] images_cats = await self._repository.images_cats() for d in predicted_data: predicted_idx, probabilities = d predicted_label = self._repository.labels_cats()[str(predicted_idx)] name = predicted_label.replace("_", " ") images.append( { "name": name, "url": [ f"/static/assets/cat/{predicted_label}/{i}" for i in images_cats[predicted_label] ], } ) results[probabilities] = name return { "results": results, "images": images, } def _predict(self, image: bytes, model, device="cpu") -> list[Any]: img_size = (224, 224) preprocess = transforms.Compose( [ transforms.Resize(img_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) input_tensor = preprocess(Image.open(io.BytesIO(image))) input_batch = input_tensor.unsqueeze(0).to( device ) # Добавляем dimension для батча with torch.no_grad(): output = model(input_batch) probabilities = torch.nn.functional.softmax(output[0], dim=0) k = 5 topk_probs, predicted_idx = torch.topk(probabilities, k) predicted_data = [] for i in range(k): predicted_data.append( (predicted_idx[i].item(), float(topk_probs[i].item())) ) return predicted_data