import os os.environ['CUDA_VISIBLE_DEVICES'] = '-1' import json import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.utils import load_img, img_to_array from tensorflow.keras.utils import image_dataset_from_directory # model_name = "beerd_25_04_2023.keras" model_name = "beerd_imagenet_25_04_2023.keras" img = load_img("photo_2023-04-25_10-02-25.jpg", color_mode="rgb") img = tf.image.resize(img, (180, 180, ), "bilinear") img_array = img_to_array(img) test_model = keras.models.load_model(model_name) test_loss = test_model.predict(np.expand_dims(img_array, 0)) list_labels = [fname for fname in os.listdir("assets/dog")] list_labels.sort() dict_names = {} for i, label in enumerate(list_labels): dict_names[i] = label with open("beerds.json", "w") as f: f.write(json.dumps(dict_names)) max_val = 0 max_num = 0 for i, val in enumerate(test_loss[0]): if val < max_val: continue max_val = val max_num = i print("-----------------------") print(list_labels) print(test_loss) print(max_num, max_val, dict_names[max_num])